Surface Treatments and Functional Coatings for Biocompatibility Improvement and Bacterial Adhesion Reduction in Dental Implantology
نویسندگان
چکیده
Surface modification of dental implants is a key process in the production of these medical devices, and especially titanium implants used in the dental practice are commonly subjected to surface modification processes before their clinical use. A wide range of treatments, such as sand blasting, acid etching, plasma etching, plasma spray deposition, sputtering deposition and cathodic arc deposition, have been studied over the years in order to improve the performance of dental implants. Improving or accelerating the osseointegration process is usually the main goal of these surface processes, but the improvement of biocompatibility and the prevention of bacterial adhesion are also of considerable importance. In this review, we report on the research of the recent years in the field of surface treatments and coatings deposition for the improvement of dental implants performance, with a main focus on the osseointegration acceleration, the reduction of bacterial adhesion and the improvement of biocompatibility.
منابع مشابه
A review on the prevalent fabrication methods, microstructural, mechanical properties, and corrosion resistance of nanostructured hydroxyapatite containing bilayer and multilayer coatings used in biomedical applications
Surface treatments of the biomaterials are of great interest in many biomedical applications. Hydroxyapatite is a favorable candidate for surface modification of the implants. To date, a wide variety of methods have been developed to produce bio-active/biocompatible coatings with desirable features in order to improve the performance of the implants. This paper strives to overview the present p...
متن کاملFunctional Coatings or Films for Hard-Tissue Applications
Metallic biomaterials like stainless steel, Co-based alloy, Ti and its alloys are widely used as artificial hip joints, bone plates and dental implants due to their excellent mechanical properties and endurance. However, there are some surface-originated problems associated with the metallic implants: corrosion and wear in biological environments resulting in ions release and formation of wear ...
متن کاملIn vitro Biocompatibility of New Silver(I) Coordination Compound Coated-Surfaces for Dental Implant Applications
Biofilm formation on implant materials causes a common problem: resistance to aggressive pharmacological agents as well as host defenses. Therefore, to reduce bacterial adhesion to implant surfaces we propose to use silver(I) coordination networks as it is known that silver is the most powerful antimicrobial inorganic agent. As a model surface, self-assembled monolayers (SAMs) on gold Au(111) w...
متن کاملIn Vitro Effects of Four Porcelain Surface Treatment Methods on Adhesion of Lactobacilli Acidophilus
Objective: Adhesion of Lactobacillus acidophilus (L. acidophilus) to dental porcelain surface may lead to gingival inflammation and secondary caries. Surface roughness is among the factors affecting this adhesion. The purpose of this study was to evaluate the effects of four different surface treatment methods on adhesion of L. acidophilus to dental porcelain. Methods: Sixty specimens (3x10...
متن کاملاصلاح سطح ابرآبگریز پلیمر پلیپروپیلن با هدف بهبود برهمکنشهای بیولوژیک
The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS) . Here, we pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016